EQUAL-STRENGTH HOLE IN A PLATE
IN AN INBHOMOGENEOGUS STRESS STATE

N. I. Ostrosablin UDBC 539.3

Let the state of stress in a continuous plate be defined by Kolosov—~ Muskhelishvili functions [1]:

3 02+ 0)) = B, (3) + B, @), )

5 {0y — 02) -+ 11, = 0} (2) + ¥, (2),
where & (z) = ¢, (2), ¥ (z) = ¥y (z) are known functions of the complex variable z =x +iy holomorphic in the region
of the plate that satisfy given conditions at the boundary of the plate.
In the plate we make a hole with edge L to which we apply constant normal and tangential stresses:
On =D, Ty =T, 2 L, {2)

where (n, t) i® a coordinate system linked to the normal and tangent to the contour L and oriented in the same
way as the (x, y) coordinate system. On traversing L, the region occupied by the material remains on the left.
There is stress redistribution on account of the hole in the plate. The stress state in the plate with the hole
may be represented via the functions

D(z) = Dofz) + Di(2), ¥(z) = Yo(2) + ¥ul2), {3)

where 9 (z),¥,(z) characterize the additional state of stress caused by the hole. These functions must be such
that conditions (2) are met on L, while the stresses become those of (1} at the outer boundary of the plate,

We solve the problem approximately on the assumption that the dimensions of the plate are much larger
than those of the hole, Then we get a problem with zero conditions at the infinitely remote edge for the addi-
tional stresses.

Apart from conditions [2] we specify further that the stress o; on L be constant (an equal-strength hole
21 .

g; = q = const, z & L. 4)

The problem may not have a solution for a given L, so L is not specified in advance but is chosen such as to
meet (4). Such holes may be optimal in the sense of minimal stress concentration [3-8].

The principal vector of (2) for the external forces applied to L is zero, and the functions ®y(z), ¥ ,(z) are
holomorphic in the continuous plate, so the functions $4(z), ¥,(z) have the following order [1] near an infinitely
remote point:

Dy(z) = 0%, ¥i(z) = 0(z~). (5)
On L we have [1]

Yy(o, + oy) = @(2) + a—)(—z) = (oy +0,), z2& L, o(oy —0,) + T,y
= 20'(z) + ¥(3) = — Yoo, — 0n) -+ iy, 1dz/da.

We substitute (2)-(4) into these equations and get the following boundary conditions for & {z), ¥(z):

() + By(z) = Yy(p + ) — [Dolz) + Bola)],
20, (3) + ¥, (2) = — adz/dz — 204 (2) + ¥, (3)], z= L,

where o =1/2(q—p)+i‘r.
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Let ®y(z), ¥ ((z) take the form
m m
(I)O (2} = 2 ahzha ¥, (2) = Z bhzka (7)
iSo K=o

where the coefficients are assumed to be known constants. We take the functions in the form of (7) to obtain
solutions of practical interest [7].
We perform conformal mapping with the functions
=co@)=c el c=|c|>0, ¢g=1, ¢=0 (8)
n=0

for the region [£]>1 into an infinite region outside L. It can be assumed in (8) that ¢c= lel> 0, ¢y =0, since
one can always make the substitution

z = elae(zy + |eley),
which amounts to rotating the coordinate system through the angle arg ¢ and then transferring the origin to the
point lec |c1. We put
Dy(z) = Dylea(L)] = Oy(F), ¥i(z) = ¥, lco(d)] = ¥yY),

and get that & (£), ¥4(£) in the region of an infinitely remote point have the following orders on the basis of (5)
and (8):

D) = O(L2), Yi(L) = (L) (9)
We assume that w+'(¢) satisfies Gelder's condition, and then [8]
o't() = o+'(t), (10)

where the plus denotes the limiting values of the function as ¢ tends from the region |¢| > 1 to the points on
unit circle |t] =1.

We now use (7), (8), and (10) to rewrite (6) for & (&), ¥,({) (the plus sign is omitted) as

@, 1)+ D, () = (P+4)-[2 AR (t)+2“h(° (t)]=f(t),

h=0

11)

G} O (1) + ¥y (1) = & o (1) & [m(t)z koo™ () +E pro® (t)] =h@®), |t|=1,

o (t) o () —

where o) = aicK; B =bck; k=0, m; we find the representation of wK(¢) for large ||, and on the basis of (8) get

o' (@)=t ( b} cnc“") =t 2 Wt = 2 eW2nl” + 2 el (12)
n=q nei
where the coefficients cl(»lk) are determined [9] from recurrence formulas:
cgk)=c§=1, e — ——Z[] (k+1)—nj c,cn_,, n =1, oo. (13)

We write out the combination
h()o' ()—o @ f (t) = ao’ (&) _hmzlj ko_chm—hzml Brot(t)w'(f)
= =0

=[_ o (7) + 2 "&" oI — kﬁ_’;im"“(t)] =g'(0).

k=1 k=0

(14

The boundary-value problem of (9) and (11) has been considered elsewhere [10]; we use the results of
[10] with (12) and (14) to get a solution to the boundary-value problem of (11) (motion around the circle |t] is
clockwise):
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{15}
n=0 k=— n=
1 ’ d ({1 g(t)
Q) Q) = g (i = g (g [ 4)
d { ey T 2m ket %1 e — Em Py [ By ‘Sl (k1D & J}
=T TE n Cpti-n
@ [ R e T FFT e
- m e B =ty m ht1
_ %% ke, e Vi (41) pn—1 {16)
- gz - k=v1k+ 11‘:1 §n+1 - P ],‘+ 1 l:(k + 1) 0) )m (g) anI nch+1_n§ ]’
Then from the first condition of (9) we must have
L+ — 3 (e +ae?) = 0; 17
h=0
‘g) anchiy + glahzl(l’}-?l = 0. (18)

We see from (16) that the second condition of (9) is obeyed. From (16) we have

m ' y moo = R SRt "‘
—_ h L1 X QY ke, Y Phion
Y0 =— go P Q) + 55 <‘— P _:1 - ;

2 ) (19)

We determine the constant q from (17), while (17) gives that the constant @ is

m

= 3(@—p) + = 2 (onck + anes™) —

p+it.

(20}
The function w() satisfies the following functional equation {10]
H=(0) + o(1/)F=(2) = 0, 17] < 1, @1)
where the functions H=~({), F—({) are defined in the region I | <1 by the formulas

H™ (@) = ij'——(idhgg(.z_};j t_(f)g dt)
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+k;k+1[<k+w<z)m<?>~z—v =g

‘m‘ B kt1

L (B+1) sn~1
¢ e - n2=1 NI

2O g ) 4 —i1

F7 (@) = 2m t-—- ’df P 5 =T dt) EE(DI (_C_)
S o 3 el V Sre1 (LN =) L &y melh,
2 2 nep_n oy (Z—) w (—;,) .,T — 21 €n+1 ,
- ' ° n=
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Fig. 1 Fig. 2 Fig. 3
where F~(0) =0, according to (18). We substitute these functions into (21) to get
: ‘ -, 1y 1 n—, c( )
_a{w (—E);——'—]"Fm( )(Zakz,ncg‘lng 1+yak2 ncn+1)

ht1
y B z nefhD gn-t 2 K, nc;‘,’fﬁ;l_’,, 0
T T - TET 4 o =0

n=3

We introduce the symbols

m
( —
Ad,=n 2 a’hck—znv n=1,m,
h=n
m B
ann 2 k- hi cg:iil)ﬂv n=11n3+19 (22)
h=n—1  °*

S

kot -

Drp=n 2 _:lc,,_;}il_),,, n=T,m+1
=1

and replace ¢ by 1/¢, while all the parameters are replaced by the conjugate ones, which transforms the equa-
tion to

oom mit
—ajo’ (§)— el + ( AL+ c,,ﬂ)m(?;) + (c"+l — Dat"? )mo lgi>1. (23)
=1 Tt
If =0, we put
1 ¢ Ay on Zn 1
Ag=—213(o-2tL),

D D

Yo =0, "21“00—"';1‘, vn=-—c_€-"—, n=2, m1,
B,

and rewrite (23) as

A@T Ky n—1_A(D)
[o@e*®] = ¥ p,m 1A, (24)

N=w=(M+1)

The functions eA (%), e=A(Z) can be represented as Lorant series in the region 0 < | ¢]< ;
eA(t“) = \‘ P'ucna e—A(;) = E }'ngnv

P
T — 00 N= w00

where the coefficients are defined by the formulas of [11] (the motion around the circle || =pis counter-
clockwise):
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A(D) — ——
f jn«ld’ 0<p<oo, In=1pm(—a), n=—o0, co.

Then the general solution to (24) is written as

m+1 oo i m+1 \ 3
o (L) = [( 2 Vk.u-h) Ing 4 ‘\_‘ —n-( Vrlbnop } g" -+ 5} g™, (25)

he={m41) . - \& =—(m+1) J

where 6 is a constant of integration,

It follows from (25) that w(Z) has the form of (8) if we have the following:

m+1 oo { m-1
2 Yal-r =0, 2 e ( E ?kps_h) s+ 8k =0,
k=—(m+1) g;—(;—w h=—(m+1)
2 met1 (28)
2 ry ( E 'Vkp-s——k) A+ 8k =1,
s5=oa © \k="(m41)
oo 1 I3 m+1
> ;( > Valtes )M_s—i-ﬁ?»n—o 2, oo,
§=—00 h=—(m-+1)
S0
where the coefficients of the w(¢)of (8) are
oo m--1 .
Cnir = 2 -sl( 2 Yk”s—h) Mon_s+8hon, n=1, co. @7
:;6—00 k=—(m+1)

Therefore, the function w(¢) will have the form of (8) if the parameters of the problem are such that (26} is
obeyed. As w({)satisfies (21) [10], we have that condition (18) is obeyed. Then the coefficients cn+4, n=1, «
are defined by (27). As for m=2 the right side of (27) contains the coefficients ¢y, ..., crp, the first m~1 rela-
tions of (27) will be a system of equations for the coefficients ¢, ..., cy.

If we substitute (8) into (23) and compare coefficients for identical powers of £, we get the following sys-
tem of equations for the cy:

m--1—-n SR By
2 chipp1—Dn=0, n=1, m+1; (28;
=0
i m ~
21 Ajtipr + Ar6 =0,
=
m _ n+1<m_ - [29)
_2.: Ajcn*{—l-';fj -+ ANRC, 4y + 2 A_}cn%-l——j “{‘ By == Oa it o== 1’ m - 17 ¥

J 31

ibez

m
— o —
Aoy + Anenyy + 2 Ajeniamy =0, n=m+2, co.
7= =1

The form of (21) implies, which can be checked directly, that equations (28) are obeyed identically, The first
equation in (29) coincides with (18), as can be checked by using (13) and (22). Therefore, the coefficients in
the mapping function w () should satisfy (29), where ¢, Aj, Bj are defined by (20) and (22).

A check shows that the ¢, 41 defined by (27) satisfy (29) if (26) is obeyed up to n=m, whereupon the other
relations in (26) will be obeyed. Therefore, if there is to be an equal-strength hole for &= (¢ we must specify
that the first m+2 relations in (26) are obeyed. One of these relations defines the constant 6.

i
@Y (ol - Tef) — p o+ 1w =0, (30)
—0

then w(&) is found from (23). The coefficients in the series expansion may be found from (29), with the initial
coefficients ¢, ..., cm related by (30),



Therefore, the boundary-value problem of (9) and (11) has been solved: the functions & (£), ¥4({) are ex-
pressed by (15) and (19), while the coefficients in w(¢) are defined by (27) when the m+2 first conditions in (26)
are obeyed or else by Egs. (29) and (30). TFor the solution to be complete we need to impose constants
on the ¢y such that the w (¢) of (8) will be of one sheet in the region of |£[>1. It can be shown that for this to
be so in the region |£/= p>1 it is sufficient to meet the condition
n

7{_—1—<1.

v | Cn
%

n=1
We give some particular cases. For m=1 we have from (13), (20), and (22) that
Ay =ay, By= "y, By =8,, D, =0, D, = a,
a=a0—{—50-p+i1:, Yo =0, v, =1,

T2 = —o/a, -1 = Bo/a, Y-, =P

=B,/ a.

e 2 () (250,

where Jn() are Bessel functions of order n [11]. The coefficients ¢4 are given by

oo 2 3
Cnty = 2 -61'_( 2 Ysz-h) x_""‘s + 6}"—'1, n=1, o0, (31)

§=—0a

7=

The values of un,Ap are

=—2

where the given parameters and constant 6 are such that

2
2 Vel—r == 0, 2 ( 2 thvs-h) s+ 8hy =0,

s——co h==—9

(32)
oo ] 5
2 .s—( z vh”s—k) Ajos 0k =1

k

is obeyed. If @ =0, then w(}) = (& ~ Po/E? — BYT®) (@q+@4/¢%7Y; if oy =0, then (32) is obeyed, with 6 =0, and
from (31) we get

Co = ”“Fo/aq Cy == ——_ﬁl/_fd, Sty = 0, n =3, X,
i.e.,
o() = § — Poal — By/2al (33)

This function is of one sheet in the region [¢|> 1, if the parameters are such that

ol + Thule < lag + 7@ — p — itl. (34)

The above solutions were not obtained in [2], where the case m=1 was considered. The solution of [2]

subject to condition (18) follows from (31) or from (29) if we put cp4y =0, n=2, =, where we get

ey = —ayfay = —byla = —b,lay.

This shows that an equal-strength hole in that case is a degenerate ellipse, not simply an ellipse [2, 12], and
this hole does not alter the initial state of stress, since the functions & (¢), ¥;(£) will be zero.

Figures 1-3 show the equal-strength holes corresponding to (33) for certain values of the parameters,
We write the coefficients cy and cg in the exponential form

i .
czzlcﬁle%, "3=|63|eups

Figure 1 shows the L for the following values of the parameters: c,=0, | es| =1/2; 1/3; 1/5 for curves 1-3
respectively, where z, = (z/ c)e"“pﬂ'/ 8, For ¢, =0, the equal-strength holes are hypotrochoids, The parameters

in Fig. 2 are as follows: @o/2=04/3, |c,| =2 |03| =1/2 (curve 1), lc,| =lesl =1/3 (curve 2), and ey} =1/3, legl =
1/5 (curve 3), where zy =(z/c)e~192/2, The parameters in Fig. 3 are [eol =2 fcsl = 1/2, 95 =0, p3=1/6 (curve

1), 9o =71/6, p3=0 (curve 2). The holes with nodal points correspond to parameters for which the sign of equality
applies in (34),
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Equations (26) are obeyed identically if &) =0, k=1, m, and 6 =0; then (27) becomes as follows on the
basis of (22) for the By

m

L Y B -n S— —
Cngy = — ";" 2 k__}'h_”l— c§{+_+1-1~)ns n= 15 m+ 11 Cat1 = O, n=m- 21 a, (35)
h=n-1

For n=m, m+1, we have from (35) with (13) that
Cmtr = —ﬁ_m—lla—mv Cmte == —B-m/a_(m + 1.

For m=2 the other expressions in (35) will constitute a system of equations for the coefficients ¢,, ..., ¢y for
example, for m=3 the equations are

= — L ot i 4 B ea = — +(B 1 B)

@

from which we get

o4 - 1\
- (‘So -7 6163> (1 —8,8;) + (60 -2 6163) 3, 5, 3
J— (,'3 == -——2—- - Vgla,

Co == = = 3
: (1 - 6363)2 — 8,6,

where Op = B1/; k=0.3., For m> 3 the system of (35) becomes nonlinear and will have several solutions, i.e.,
there may be several equal-strength holes for the given parameters. It may be that the specificiations at w(f)
is on one sheet and will rule out some of the solutions,

If o =0, k=1, m, we see from (15) that & (¢) is zero, i.e., the hole in that case is not only of equal
strength but is also harmonic [13].

Therefore, a distinction of the present study from [13] is that we have defined equal-strength holes in a
plate with an inhomogeneous initial stress distribution, These holes can also be harmonic.
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